
Tenth Annual
University of Central Florida

ACM UPE

High School Programming
Tournament

Problems
Problem Name Filename

Check-ing Hai-ku HAIKU
Run for It! RUNNING

Simple Polygons SIMPLE
Good Passwords PASSWORD

Palindrome Compression COMPRESS
2001 SPACE

Miss You! CARDS
Full Moon Predictor PREDICT

Security Clearance SECURITY

Call your program file: Filename.PAS, Filename.C, or Filename.CPP
Call your input file: Filename.IN

For example, if you are solving Miss You!:

Call your program file: CARDS.PAS, CARDS.C, or CARDS.CPP
Call your input file: CARDS.IN

Check-ing Hai-ku
Filename: HAIKU

A common English homework assignment is to write a Haiku. For our purposes, a Haiku is a
poem containing exactly three lines and a total of 17 syllables (first line five, second line seven,
and third line five syllables). Because of classroom overcrowding, one teacher wants to automate
the task of grading student Haiku assignments.

The Problem
Given homework assignments from several students, determine whether each assignment is a
valid Haiku. If it is not, explain why not.

The Input
Each student assignment will appear in the file over one or more lines. A single blank line will
follow each student assignment. No assignments will exceed 10 lines in length, and each line
will contain 1 to 80 characters. Lines will contain upper and lower case letters, spaces, and the
hyphen (as explained below) but will not contain any other characters. A single hyphen will be
used within words of more than one syllable to delimit syllables. For example, the word
"example" will appear in the input as "ex-am-ple".

The Output
For each student assignment, output one of the following:

Good Haiku!
Not a Haiku because it has reason.
where reason is one of

the wrong number of lines
the wrong number of syllables on line 1
the wrong number of syllables on line 2
the wrong number of syllables on line 3

If an assignment is not a Haiku for more than one reason, output the first applicable reason from
the list.

Sample Input
The sun shines bright-ly
Glist-en-ing off the cold pool
Of deep blue wat-er

There once was a man from Nan-tuck-et
Who bought from a ven-dor a buck-et
He got a good price
But then he found lice
So much for the luck of the buck-et

Sample Output
Good Haiku!
Not a Haiku because it has the wrong number of lines.

Run for It!
Filename: RUNNING

Five kilometer (SK, or 5000 meters) road races attract runners of all ages. Novice runners start
the race at top speed, only to wear out after the first kilometer or so. After a brief rest stop, they
start at top speed again and tire soon afterward. They continue this until finishing the race.
Experienced runners maintain a steady pace throughout the race without stopping.

The Problem
Given statistics about each runner in a 5K road race, determine the winner and the winning time.

The Input
Data for each race begins with the number of runners. A race with no runners ends the input file.
The following statistics will be given about each runner, one value per input line:

n, Runner name
s, Running speed (meters per second)
m, Time runner maintains speed (seconds)
r , Rest time (seconds)

Runner n runs at s meters per second for m seconds and then must rest for r seconds before
restarting. The runner's name will not contain a space. Assume each input line starts in column
1.

The Output
Identify each race by its ordering in the input fde as shown below:

Race r a c e n u m : The winner is r u n n e r n a m e with a time of m m : s s .

Sample Input
2
David
5.0
480.0
5.0
Steve
3.5
400.0
5.0
2
John
5.5
100.5
10.0
Tim
4.9
640.0
5.0
0

Sample Output
Race 1: The winner is David with a time of 16:50.
Race 2: The winner is John with a time of 16:39.

Simple Polygons
Filename: SIMPLE

A polygon is simple if none of its edges cross. For example,

Simple Polygon Not a Simple Polygon

The Problem
Given a closed polygon, determine whether it is simple.

The Input
Each data set begins with a line containing a single integer n (0 I n I 50; n#l and n#2); there are
n vertices in the polygon. The next n lines each contain one vertex (x,y) of the polygon, where x
and y are integers such that -100 I x I 100 and -100 I y 5 100. The list of vertices is ordered
around the polygon (in other words, the first and second vertices are endpoints of a polygon edge,
as are the second and third vertices, etc.). The first and last vertices listed also are endpoints of a
polygon edge. Your program must stop processing input data when it reaches a polygon with no
vertices.

The Output
For each input polygon, output a single line containing either SIMPLE or NOT SIMPLE,
whichever is appropriate.

Sample Input
3

Sample Output
SIMPLE
NOT SIMPLE

Good Passwords
Filename: PAS SWORD

Bonehead told his girlfriend, Airhead, "It's really cool we are using each other's names as
our passwords."

Airhead replied, "But some people say you shouldn't use a password that people can
guess."

Bonehead said, "If we can't guess it, how are we going to log in?"
Airhead thought about this for a while. "I don't know, I'm getting a headache!"

The Problem
Define a good password as one that:

is at least five characters long,
is not al l lowercase letters,
is not all uppercase letters,
is not a l l digits, and
is not an English word.

For simplicity, define an English word as one containing only letters such that every consonant is
followed immediately by a vowel (a, e, i, o, u). If the last letter in the word is a consonant, it
does not need to have a vowel after it. For example, "good" and "five", are English words, but
"password" is not (for example, because no vowel follows the first 's').

Given a string, determine whether or not it is a good password.

The Input
Each input line contains a string of at least one and at most 50 characters. Assume each string
starts in column 1 and does not contain any blanks or other non-printable characters. End of data
is indicated by end-of-file.

The Output
Print each input string. On the next line, print a message indicating whether or not the input is a
good password. Leave a blank line after the output for each set. Follow the format illustrated in
the Sample Output.

See the following page for sample input and sample output for this problem.

Sample Input
alilOO
OROOJI200
abcdef
ABCDEF
AbCdEf
aEioUae
123456
abc
ToBeToBe

Sample Output
alilOO
Good

OROOJI200
Good

abcde f
Not Good

ABCDEF
Not Good

AbCdE f
Good

aEioUae
Not Good

123456
Not Good

abc
Not Good

ToBeToBe
Not Good

Palindrome Compression
Filename: COMPRESS

As the newest member of the development team for the WordQuiteGood word processor, you
have been assigned the unpleasant task of optimizing the spelling dictionary. You've decided to
save a kilobyte or two of disk space by compressing all the palindromes in the dictionary. A
palindrome is a word that is the same when its letters are reversed. Thus, "radar" and "redder"
are palindromes. Note an important difference between these two palindromes: the first has an
odd number of letters, while the second has an even number.

The Problem
Given a word, "compress" it if it is a palindrome by removing the redundant letters from the end
of the word. If the palindrome has an even number of letters, then the entire last half of the word
can be removed. If the palindrome has an odd number of letters, the center character is not
removed. An extra character must be added to the end of each palindrome so it can be
"decompressed" later: an asterisk (*) is appended to the compressed versions of palindromes
with an even number of letters, and a tilde (-) is appended to the compressed versions of
palindromes with an odd number of letters.

The Input
Each line of input contains one word, starting in the first input column. There will be no spaces
after the word. The word will consist of only uppercase letters (A through 2). Each word will be
from 1 to 70 characters in length. End of input will be indicated by end of file.

The Output
Output a L'compressed" version of each input palindrome, as described above. If the input word
is not a palindrome, output the word exactly as it appears in the input.

Sample Input
RADAR
REDDER
BANJO
NOON
EYE

Sample Output
RAD-
RED*
BANJO
NO*
EY-

2001
Filename: SPACE

As you probably know, "HAL" (the computer from 2001: A Space Odyssey) can be formed from
"IBM'* by shifting each letter backwards one position in the alphabet (I+H, B+A, and M+L).
What other coincidences might we find by shifting letters backward?

The Problem
Given a three letter word containing only uppercase letters, output a new three letter word (also
in all uppercase) such that each new letter is one "less" than in the original input. Note that we
define Z as being one less than A.

The Input
The first input line contains a positive integer, n. There will be n data sets in the file, one data set
per line. Each data set contains one three letter word starting in the first column.

The Output
For each three letter word, output the new three letter word as described above.

Sample Input
3
IBM
UCF
FLA

Sample Output
HAL
TBE
EKZ

Miss You!
Filename: CARDS

The CIA (Central Imperfection Agency), using our good tax money, is responsible for making
sure decks of playing cards are complete before sending them to the FBI (Federal Boring
Investigators). Considering how inept these agencies are, you write a program to help them.

The Problem
Given a deck of cards, your program is to determine which cards are missing from the deck.

The Input
There will be multiple data sets in the input. h c h data set starts on a new input lime and will be
given on one or more lines. Input lines will not ex& column 70, and each line will contain
some data. Each card is represented by two adjacent characters, i.e., there won't be spaces
between the two characters. The cards on an input line are separzted from each other by at least
one space. The first character of a card will be 2, 3, 4, 5, 6, 7, 8, 9, T, J, Q, K, or A,
representing two through ace, respectively. The second character will convey the suit using
initial letter of S, H, D, or C for spades, hearts, diamonds, and clubs. End of a data set is
indicated by *. End of data is indicated by end-of-file.

The Output
Print a heading for each data set. Then print the missing cards (in order) on f m output lines.
Leave a blank line after the output for each data set. Follow the format illustrated in the Sample
Output.

Sample Input
2 s 3 s 4 s 5 s 6 s 7s 8s 9 s T S JS Q S KS A S
2 H 3 H 5H 6 H 7 H 9 H
2 D 3 D 4 0 5 D 6 D 7 D 8 D 9 D T D JD QD KD AD
t*

Sample Output
D a t a set 1:

Spades :
H e a r t s : 4 8 T J Q K A
D i a m o n d s :
C l u b s : 2 3 4 5 6 7 8 9 T J Q K A

D a t a set 2 :
Spades :
H e a r t s : 4 8 T J Q K A
D i a m o n d s :
C l u b s :

Full Moon Predictor
Filename: PREDICT

Thirty days hath September,
April, June, and November.
All the rest have thirty-one,

Save February which has twenty-eight. ..

Part of your job as treasurer of the interpretive dance club is to plan the schedule for the year.
You have decided to hold the Out Of Doors Nature Dances on every full moon. This will give
you the most light possible and offer inspiration to your interpretive danceclub friends. Thus,
you need to know what days the moon will be full. Assume for the purposes of this problem that
the moon is full every 29 days.

The Problem
Given the date of the first full moon this year, determine the other full moon dates this year.
Assume this is not a leap year.

The Input
There will be multiple data sets. Each set contains one integer on its own line. The integer
indicates the date of the first full moon, which will be a day in January. Your program must stop
processing input when the date is 0.

The Output
For each full moon date after the one given in the input, output the message "Full Moon On
month-day", where month is the integer value of the month (without padding; that is,
February is represented as "2", not as "02"), and day'is the integer value of the date (aga;.;~
without padding). Print a blank line after the output for each data set.

Sample Input
3
0

Sample Output
Full Moon On 2-1
Full Moon On 3-2
Full Moon On 3-31
Full Moon On 4-29
Full Moon On 5-28
Full Moon On 6-26
Full Moon On 7-25
Full Moon On 8-23
Full Moon On 9-21
Full Moon On 10-20
Full Moon On 11-18
Full Moon On 12-17

Security Clearance
Filename: SECURITY

MicroSock Industries' security system uses automatic human identification. People wanting to
enter secure areas are scanned by a computer system to confm their permission. Scanning may
involve retina, fingerprint, voice, or face recognition, or other methods. However, the programs
in the current system are not foolproof, and are not always able to distinguish between similar
people. In such cases, the software identifies a list of possible employees that might be the
person attempting to gain access.

The MicroSock security computer maintains a database of access areas for each employee. If all
employees in the possible-list have access to an area, the security system grants access to the
area. However, if some employees in the list do not have access to an area, then the system
refuses access for the candidate.

The Problem
Given the security access database and the possible-list for a candidate, determine all areas that
the security system will allow access for the candidate.

The Input
The input has two parts: the security access database followed by a series of possible-lists. Note
that no line of input will be longer than 80 characters.

The first line of the security database is a positive integer n which specifies how many people are
in the security database. Following this first line, there are 2n lines of text, a pair of lines for
each person in the database. The first line of each pair is the name of a person. The second line
is a list of zero or more locations that the person is authorized to enter. The locations consist
only of alphanumeric characters and are separated by spaces.

The first line of the series of possible-lists is a positive integer m specifying how many possible-
lists are to be processed. After this line are m possible-lists. The first line of each possible-list is
a non-negative integer k indicating how many different people the scanned individual might be.
On the following k lines of input are the possible identities of the scanned person, one per line.

The Output
For each possible-list, print a single line of text indicating which areas the scanned person
definitely has access to with the following format:

Grant access to area, ..., area.

If there are no permissible areas for the person, print the following:

Do not grant access to any areas.

See the following page for sample input and sample output for this problem.

Sample Input -
3
Ali Orooji
DataProcessing DatabaseResearch AILab
Mike Smith
VisualProgramming DataProcessing
Travis Terry
VirtualReality SimulationLab ParallelProcessingLab
3
1
Ali Orooj i
2
Ali Orooji
Mike Smith
2
Ali Orooji
Travis Terry

Sample Output
Grant access to DataProcessing, DatabaseResearch, AILab.
Grant access to DataProcessing.
Do not grant access to any areas.

